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Abstract — The problem of steady natural convection film boiling about a heated isothermal vertical plate in
a porous medium filled with a subcooled liquid is considered. With the boundary layer approximations,
similarity solutions are obtained for the buoyancy-induced flow in the vapor and subcooled liquid layers with
adistinct interface. At a given vapor Rayleigh number, the Nusselt number is found to be uniquely dependent
on the vapor film’s dimensionless thickness, which in turn depends on three dimensionless parameters
related to the degree of superheating of the wall, the extent of the subcooling of the surrounding liquid, and a
property ratio of the vapor and the liquid phases. It is found that the effect of the increase of the subcooling of
the surrounding fluid tends to decrease the vapor boundary layer thickness, increase the liquid boundary
layer thickness and increase the surface heat flux. On the other hand, the increase of the wall superheating
tends to increase the vapor layer thickness, decrease the liquid layer thickness and increase the surface heat
flux. Application to boiling heat transfer about a dike intruded into an aquifer is discussed.

NOMENCLATURE
c, specific heat of the convective fluid;
C.,  a quantity defined in equation (38);
f, dimensionless stream function;
h, local heat transfer coefficient;
hy, latent heat of vaporization;
K, permeability of the porous medium;
k, thermal conductivity of the porous medium;
m, mass flux;
Nu,, local Nusselt number;
D, pressure;
q, local heat transfer rate;
R =P _—__”’-“"(p P ")CPL]I/Z property
’ P .uvaLpuoﬁthg ’
ratio of the vapor and the liquid phase;
Ra,, local Rayleigh number;
Sc, = ¢, (T; — T)/hg, dimensionless degree of
subcooling of liquid;
Sh, = ¢p(T,, — T,)/hgg, dimensionless degree of
wall superheating;
T, temperature;
u, Darcy’s velocity in x-direction;
v, Darcy’s velocity in y-direction;
X, coordinate along the surface;
Vs coordinate perpendicular to the surface.

Greek symbols

a, equivalent thermal diffusivity;

B, the coefficient of thermal expansion;
o, boundary layer thickness;

n, similarity variable;

g, dimensionless temperature;

i, viscosity of the convective fluid;

0, density of the convective fluid;
v, stream function.
Subscripts

saturated condition;

Rl

v, vapor phase;
L, liquid phase;
oo, condition at infinity;
w, condition at the wall.

INTRODUCTION

THE PROBLEM of boiling heat transfer in a porous
medium has important applications in engineering
and geophysics. In a recent paper, Parmentier [1]
studied the problem of boiling heat transfer about a
heated vertical surface in a permeable medium filled
with a subcooled water, with application to dike
intrusion in an aquifer. Parmentier [1] postulated that
when boiling occurs adjacent to a vertical surface in a
porous medium, a thin vapor film will form. With the
aid of a p—T phase diagram, he argued that the vapor
film and the liquid water are separated by a distinct
interface with no mixed region in between. As a result
of this approximation, the mathematical formulation
of the problem is considerably simplified. By
assuming: (a) that the density of the subcooled water is
constant; (b) the density of the vapor is small
compared with the saturated water; and (c) that heat
conduction in the longitudinal direction is small
compared with the transverse direction, Parmentier
obtained an approximate solution for Nusselt number
for this problem.

The assumption that the vapor and liquid phases are
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separated by a distinct interface has always been made
in the classical film boiling heat transfer literature.
Earlier work on natural convection film boiling about
a vertical plate in a Newtonian fluid has been studied
by Bromley [2] and by Ellison [3] based on the
assumptions that inertia force of the vapor fitm is
small, the interface velocity is zero, and the
temperature profile in the vapor film is linear. Koh [4]
studied the same problem based on boundary layer
theory, and taking into consideration the momentum
transfer at the vapor liquid interface. At the same time,
Sparrow and Cess [5] studied the effect of subcooled
liquid on film boiling with the assumption of zero
interface velocity. Sparrow and Cess’s problem was
later studied by Nishikawa, Ito and Matsumoto [6]
who used the same hydrodynamic interfacial
boundary conditions as that of Koh [4].

Most recently, Cheng [7] obtained a similarity
solution for stable film boiling about an inclined
surface in a porous medium filled with saturated liquid
(i.e. zero subcooling), based on the usual assumptions
made in the classical film boiling literature. In the
present work, the effect of subcooled liquid on stable
film boiling about a vertical plate in a porous medium
will be considered. The assumptions made in this
paper are similar to the previous work [7], and
similarity solutions are obtained for both the vapor
and liquid phases. These two solutions are
interconnected through the interface boundary
conditions. Numerical solutions for the similarity
equations follow closely the work by Sparrow and
Cess [ 5]. A closed form solution for Nusselt number is
obtained in terms of Rayleigh number and the
dimensionless boundary layer thickness of the vapor
layer; the latter is found to depend on three
dimensionless parameters relating to the degree of the
superheating of the wall, the extent of the subcooling of
the surrounding liquid, and a property ratio of the
vapor and the liquid phases. It is found that the effect of
the increase of the subcooling of the surrounding fluid
tends to decrease both the vapor and the liquid
boundary layer thicknesses, and to increase the surface
heat flux. On the other hand, the increase of the wall
superheating tends to increase the vapor layer
thickness, decrease the liquid layer thickness, and
increase the surface heat flux. Application to boiling
heat transfer about a dike intruded into an aquifer is
discussed.

FORMULATION OF THE PROBLEM

Consider the problem of steady heating of an
isothermal vertical plate embedded in a porous
medium filled with a subcooled liquid as shown in Fig.
1. When the wall temperature T,, is sufficiently higher
than the saturated temperature T, corresponding to its
pressure, a vapor film will form adjacent to the vertical
plate. To investigate the two-phase buoyancy-induced
flow in a porous medium adjacent to a vertical plate,
the following assumptions will now be made:
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F16. 1. Coordinate system.

(1) A distinct boundary exists between the vapor and
the subcooled liquid with no mixed region in between.

(2) The interface at y = d, is smooth and stable, and
is at a constant temperature T,.

(3) Boundary layer approximations are applicable.

(4) Boussinesq approximations are invoked in the
liquid phase so that density is assumed to be constant
except in the buoyancy force term where density is
assumed to be linearly proportional to the
temperature.

(5) All other properties of the liquid and vapor
phases and the porous medium are constant. In
particular, the density of the vapor is assumed to be
constant in the buoyancy force term (p, — p..)g. This
is due to the fact that p, >» p, so that a more accurate
representation of the vapor density would not
significantly affect the results.

(6) Darcy’s law is applicable to both phases.

It is worth noting that assumptions (1)—(5) are the
usual approximations used in treating classical film
boiling heat transfer problems, and that assumption
(4) was not used by Parmentier. With assumptions
(1)-(6), the governing equations for the porous
medium filled with the superheated vaporaty < 8, are

ou, dv,
5;-’“67:0 1)
Uy = _E(pv—pw)g (2)
Hy
ua—T3+u@=aazT" (3)
“ ox v 9y vy

while those for the porous medium filled with the
subcooled liquid at y > 3, are

Ouy, v,
vy =0 @
u, = KBLcopoo(TL - Tao)g (5)
Hi
oT, oT T
ul“a?_%vl‘a_yb:a[z ay L (6)

where the subscripts v, L and oo denote the quantities
associated with the vapor layer, liquid layer and
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condition at a great distance from the heating plate; u
and v are the Darcy’s velocities in the x and y
directions; p, 4 and B are the density, viscosity and
thermal expansion coefficient of the convecting fluid;
K and a are the permeability and the equivalent
thermal diffusivity of the porous medium; p and T are
the pressure and temperature. It is worth noting that
equation (2) indicates that the vertical velocity in the
vapor layer is constant.

The boundary conditions at the wall and at a great
distance from the wall are

y=0, v,=0, T,=T,, (7a,b)

y—ooo, u=0 T =T, (8a,b)

where T, > T, > T,.
At the vapor-liquid interface at y =34, the
continuity of temperature demands

y= 60’ Tv = Ts = TL' (9)

From the continuity of mass flow across the interface,
we have

v uda" = ugéf =m; (10
Pu| Uy v dx y=6v_pL UL L 4x y=6v_ s (10)

where nmj, is the mass flux through the interface.

The energy balance across the interface gives

aTU . 5TL>
—ky (=) =gy — ko[ —— 11
s <6y >y=av 37 L< ay s, ( )

where k is the equivalent thermal conductivity of the
porous medium and kg is the latent heat of
vaporization of the liquid at T. Equation (11) shows
that the energy across the interface is partly conducted
into the subcooled liquid and partly is used to
evaporate liquid at a rate of m,.

We now introduce the stream functions for the
liquid and vapor phases such that

W, oy,
= 3 v = T A 12 3
u, o v x (12a,b)
) F
u, =0 _9n (13a,b)

=_¢77’ L= ox

so that the continuity equations for both phases are
satisfied automatically. In terms of the stream
functions, equations (2), (3), (5) and (6) become

&, K
3y = — (P —po)g (14)
y Uy
oy, 0T, oY,0T, 2T,
dy ox  ox dy % oy? (13)
and
N, K
“a. TP« © T, -~ Tw 16
By lle Brog(TL ) (16)

1153

20Ty _ 20Ty _

17

Boundary conditions (7a), (8a), (10) and (11) in terms
of stream functions are

y=0, %o (18)
0x
y = 00, a—w—L= (19)
oy
a'//v 6!#,, dév a'l/L aWL déL
Zre = ey == 20
p"[@x * dy dx ]F,u ”L[ax + dy dx ,=5v( )
aT, o, ov,ds
o 22) = = g =2+ 22
m‘"(@y >v=6v P [6x + dy dx:|,=,,"
+k("’ai) . e1)
Y /Jy=8,

Equations (14)-(17) with boundary conditions (7b),
(8b), (9), (18)-(21) will now be solved by similarity
transformations. To this end, we first introduce the
following new dependent and independent variables
for the vapor layer

1, = (Ra, ,)y/x (22a)
¥, = o,+/(Ray,,) f,(n) (22b)
Tv - Ts
6,(n,) = T.OT, (22¢)
where Ra, , =K(p, — p,)gx/p.a, is the local

Rayleigh number for the vapor phase. In terms of these
variables, the governing equations (14) and (15) with
boundary conditions (7a, b) and (9) are

fo=1 (23)
20, +f,0,=0 (24)
with boundary conditions
f0)=6,0-1=0 (25a, b)
0.(n,5) =0 (26)

where the prisms denote the differentiation with
respect to 7, and n,; is the dimensionless vapor
boundary layer thickness i.e.

Nos = ("v)y=6v = \/(Rax. v)é/x‘

Equations (23) and (24) with boundary conditions (25)
and (26) have the following exact solutions

fo=mn, @7

0,=1-— erf<%'f>/erf<n;5>.

It follows from equations (27) and (28) that

(28)

K
U, = ——(peo - pu)g9
°

v

(29a,b)
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1 /| Ka,
v, = 5\/[/1:; (pw - pv)g](fv - ﬂvf;,)

oo [vnlE)]

Thus, the velocity and temperature fields in the vapor
phase are uniquely determined if the value of the
dimensionless vapor boundary layer thickness, 1,5 is
known. However, the value of 75, can only be
determined by solving simultaneously the equations
for the liquid phase and satisfying interface boundary
conditions. To solve the equations for the liquid phase,
we introduce the following new variables for the liquid
layer

and

(30)

ny =/ (Ray, )y — 8,)/x (31a)

Y =ay \/(Rax. ) Sl (31b)
T,-T,

0.(n) = ﬁ (31c)

where Ra, ; = p KBrg(T, — To)x/pray is the
local Rayleigh number for the liquid layer. In terms of
the variables given by equations (31), the governing
equations for the liquid phase, i.e. equations (16) and
(17) become

fi=10. (32)
207 + f,.67, = 0. (33)

Equation (32) shows that the dimensionless vertical
velocity and dimensionless temperature are identical
in the liquid layer. The interface boundary conditions
(aty = §,,1.e. at 5, = n,, for the vapor layer and at 5,
=0 for the liquid layer) for the continuity of
temperature and mass flux are

0,(0) =1 (34)
_ m,,2 \/x
[0 = PoltrKLpoBrg(Ts — To)/ur]'"?
R
= ﬁ’lué (35)

where Sc = ¢,.(T; — T.)/heyis a measure of the degree
of subcooling of the liquid and

R= &[/‘Lav(pw - pv)CpL]l/z
Pl  HodrLpcBrheg
with ¢, = k,, 1/p. 2, denoting the specific heat of the
liquid. It is worth noting that boundary condition (35)
is related to the rate of evaporation.
The boundary conditions at a great distance from
the wall are

fileo) =0 (36)
f.(c) =0 37

It follows from equation (31b) that the velocities in the
liquid layer are
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K
u, = u—PwﬂLg(Ts —TJ)fL (38a)
L

and

1 \/[aLKpmﬂLg(Ts - Tw)]
Vp = — '2‘
Hpx

x[fo~ Culy/Vx) f1] (38D)

where

[prﬂLg(Ts - Toc)]l/z
C.= .
Moy

Note that if the values of #,; R and Sc are prescribed,
equations (32) and (33) with boundary conditions
(34)—(37) are identical to the problem of single-phase
free convection in a porous medium adjacent to a
vertical plate with suction which has been solved by
Cheng [8].

The coupling of the equations for the vapor and
liquid layers is through the dimensionless vapor
boundary layer thickness #,; and the energy balance
equation across the interface which is given by

Sc32 N, ,
Sh=[ : 91(0)—7"] / 04(11,5)

where Sh = ¢,(T,, — T,)/hy, is a measure of the wall
superheating with ¢, = k,/p,2,. Note that in arriving
at equation (39) we have used the relation 6, =
x1,5//(Ra,_,) and consequently dé,/dx = §,/2x.

(39)

NUMERICAL SOLUTIONS

There are three parameters in the transformed
problem, namely, R, Sc and Sh. The first two
parameters arise from the liquid layer equations
through the suction term in the boundary condition,
while the last parameter arises from the energy balance
equation across the interface. We now proceed to
obtain the numerical solutions to the problem using a
procedure similar to that of Sparrow and Cess [5] who
solved the equations for the vapor layer and the liquid
layer separately with prescribed values of 1, and f;(0).

(1) For a prescribed value of 7,4 solution for the
vapor layer can be computed according to equations
(27)-(30). The results for 6,(0) and 8,(n,;) vs 1,5 are
plotted in Fig. 2.

(2) For a prescribed value of f,(0) numerical
integration of equations (32)-(37) were carried out
using the Runge—Kutta method. Results for 87(0) vs
f.(0) are plotted in Fig. 3.

(3) For prescribed values of R, Sc and 7, the values
of £1(0) and @(n,;) can be determined according to
equation (35) and Fig. 2, respectively. With the value of
£1(0) thus obtained, the value of 6;(0) is determined
from Fig. 3. Finally, the value of Sh can be determined
from equation (39). Results of n,; vs Sh at different
values of Sc and R are presented in Fig. 4. Note that the
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F1G. 3. 8(0) vs f.(0) in the liquid phase.

uppermost curves are for the case of zero subcooling
(ie. T, = T, for which the value of n,; depends only
on Sh and independent of R, which has been discussed
in the previous work by Cheng [7]. Figure 4 also
shows that the effect of subcooling on 7,, is larger at
smaller R.

RESULTS AND DISCUSSION

Heat transfer results
The local surface heat flux is given by

oT,
w = _km """’E)
q ‘U(ay y=0

which can be expressed in terms of the similarity
variables to give

kp T\ — R
gy = m,v( w T_,)J a"v[—BL(O)].

X

(40a)

(40b)

To examine the effects of liquid subcooling and wall
superheating on surface heat flux, it is convenient to
rewrite equation (40b) as

CouduX

by Ra, L RO

(40c)
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FIG. 4. n,; vs Sh and Sc at (a) R = 0.05; (b)) R = 0.25;
()R =05;(dR = L.
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where the right-hand side of equation (40c) is plotted
vs Sh in Fig. 5 for the cases of (a) Sc = 0 and (b) Sc
= 0.05 and R = 0.5, where the first case is independent
of R. Figure 5 shows that the dimensionless surface
heat flux increases as Sh or Sc is increased.

The local heat transfer coefficient and the local
Nusselt number are defined as

. h
4 and Nu, = =

h=s ——— .
(Tw— Ty k.

(41a,b)

Substituting equation (40b) into equation (41a) yields
the following expression for the local Nusselt number
Nu,

JVRa, ,

When equation (30) is substituted into equation (42),
one obtains

= — 6,(0). (42)

Nu, 1
JRa,,  Jmerf(n,5/2)’

For a given value of Ra, ,, equation (43) shows that the
local Nusselt number depends uniquely on 7,;; and
that the value of Nu, increases as 7,; increases. As
shown in Fig. 4, ., is a function of Sh, Sc and R. It
follows that Nux/\/ Ra, , (Fig. 6) is also a function of
Sh, Sc and R. It is noted from these figures that (a) the
values of Nu,/,/Ra,_, decreases as Sh or Ris increased
and as Sc is decreased, (b) the value of Nu,/,/Ra, , is
independent of R for zero subcooling [ 7], (c) the value
of Nu,//Ra,, approaches a value of 05642
asymptotically as Sh —» co. The last observation can be
shown analytically if we examine equations (42) and
(43) for the following asymptotic cases:

(a) 5,6 — 0. According to Fig. 4 this limiting case
corresponds to the case of large subcooling and small
wall superheating. For this situation, most of the heat
supplied by the wall is used to heat the subcooled
liquid, and only a small portion of heat supplied is
available for vaporization. For #,,/2 < 1, equations
(28) and (30) can be expanded into a power series to

give

(43)

6= 1= (1 + (% —n)/12+ -} (44a)

Nos
8 —=
- //
/I
”

6+ Pl
— P [
s | P
<> -
O 4r //’

) ’/
. " — S¢: 0
Sc= 05

2+ o
< {R - 005

0 | 1 1 L 1

0 2 4 6 8 10 12
Sh
Fi1G. 5. Effects of Sh and Sc on the dimensionless surface heat
flux.
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Sh
28
(c) R=0.50 Sc= 0.50
-----S¢=030
— —S8¢= 0I5
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28
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24 -——- 5%:0.30
——-5¢2015
Y]
04 L 1 1 ! s i i 1 1 ;
0 4 8 74 113 @

Sh

FiG. 6. (a) Nu,//Ra, , vs Sh and Sc at R = 0.05; (b)
Nu,/./Ra, ,vs Shand Scat R = 0.25; (c) Nu,//Ra,_, vs Sh
and Scat R = 0.5; (d) Nu,//Ra, ,vs Shand Scat R = 1.
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and
0,=— !
* expOra/Amull — 1,4/12) + -]
= - ;l—-[l +0.0833n% + -], (44b)
vd
It follows from equations (42) and (44b) that
Nu,n,
\/—R—a’—lf = 14008332+ -, forn,<2.
(44c)

Neglecting the second-order terms in equation (44)
one obtains

0,=1- 21, for n,;— 0 (45a)
Nvs

N

DMt _ 1, for g, 0. (45b)

JRa, ,

Equation (45a) shows that », is a linear function of 17,5
as 1,5 — 0. Moreover, as 5, — 0, equation (39) gives

RSh

—0%(0) = ——
L( ) Sc3/2r’m’

(46)
where 6}'(0) is the temperature gradient of the liquid
phase at the interface as 1,5 — 0. Note that boundary
condition (35) gives f,(0) - 0 as #,; — 0. Thus, 6}'(0)
corresponds to the temperature gradient at the wall for
the case of free convection about a vertical plate
without suction. Solving for #,; from equation (46) and
substituting it into equation (45b) gives

Bk 1 _
[KpooﬁLg(Tx - Too)x/uLaL]”z

—610) @)

which is the same expression for Nusselt number for
single-phase free convection of liquid about a vertical
plate in a porous medium [9].

(b) n,5— 0. According to Fig. 4, this limit
corresponds to the case of large wall superheating and
small subcooling. For 7,52 > 1, equations (28) and
(30) become

6, < [1 et (1)}[1 L ep(=dm) J
2 ’106

and (48a)

—ip2
,0) = _i[l +M+ ]
\/Tt ”vd

for n,s > 2. (48b)
Substituting equation (48b) into (42) yields

Nu, exp(— 4n2y) ]
=0.5642[1 =4 )
\/ Ra,,, Nys

for n,s > 2. (49)

1157

In the limit of n,, — o0, equations (48a) and (49) give

8,=1—erf (%3>, (50)
Nu,
\/Ra,',, = 0.5642 (51)

which are independent of R and Sc. Physically,
equations (50) and (51) show that as 7,5 — oo, the
degree of subcooling of the surrounding fluid liquid
does not affect the heat transfer characteristics in the
vapor layer. Equation (51) also represents the limiting
case of free convection of a dry steam, and is indicated
as horizontal dashed lines at the right-hand margin of
Fig. 6.

Equations (45b) and (51) suggest that a plot of
Nu,n,s//Ray,, , vs 1, would show clearly the limiting
cases of 17,5 = 0 and #,; — o0. To this end, we multi-
ply equation (43) by n,; to give

Nuflos _ Mo
JRa,, Jmerf(n,52)

The right-hand side of equation (52) vs 51,5 is plotted as
a solid line in Fig. 7. The straight dashed lines in Fig. 7
represent the limiting cases of 5,,— 0 and #,; > ©
given by equations (45b) and (51), respectively. It is
convenient to represent the right-hand side of equation
(52) approximately by a power function of #,;. This can
be achieved by writing

Nuxnvé Nos Wl e
e 1
JRay., [ " (J) J

where the value of m is determined according to the
procedures recommended by Churchill and Usagi [11]
by comparing the right-hand side of equation (52) to
the right-hand side of (53). As a result, we found that
m = 3, so that equation (53a) becomes

Nuxr’vé Nus ¥
_— = 1 —_—
JRax., [ *(w)]

which is within +59; deviations from equation (52)
for all values of n,,.

(52)

(53)

(54)

Temperature and velocity profiles

The dimensionless temperature in the vapor phase,
6., for n,; = 0.2 to n,; = 2.4 is shown in Fig. 8 where it
is noted that for n,; < 04, 8,(n,) varies linearly with
respect to n,. The dimensionless temperature profiles
in the liquid phase, 6;, is shown to be dependent on the
value of f;(0) which in turn depends on the values of R,
Sc and n,; as given by equation (35). Itis noted that the
liquid boundary layer thickness decreases with
increase in Sh or decrease in Sc. The dimensionless
vertical velocities f, and f vs dimensionless distance
are shown in the same plot. Note that the vertical
velocity in the vapor phase is a constant which is
represented by a horizontal line. As indicated by
equation (32), the dimensionless vertical velocity and
the dimensionless temperature profiles in the liquid
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phase are identical in shape, and therefore no separate
representation of the vertical velocity profiles in the
liquid phase is needed.

Application to heat transfer from a dike

Consider a dike 100m in height with an average
surface temperature of 400°C is intruded into an
aquifer (with K = 1072 m?% k, , = 265Js 1 K™},
and k,, , = 1.6 Is~* K~ '} at a temperature of 20°C.
Suppose that the mean static pressure along the dike
is at 10 atm and the saturated temperature
corresponding to this mean pressure is 180°C. To
apply the constant-property theory to this problem,
we shall evaluate the properties of the vapor and liquid
layers at their mean temperatures. Thus, the density,
viscosity and specific heat of vapor will be evaluated at
the mean temperature of (T, + 7,)/2 = 290°C while
that of the liquid phase at (T, + T,)/2 = 100°C. At
these temperatures, we obtain the following properties
from Hendricks, Peller and Baron [10]: p, = 0.004 g
em™3 ¢, =216Jg 'K !y, =196x10"*gem™?
sThey =422Jg7 K™y = 274%x1073gem ™!
s~ p, = 09574 g cm™3 and B,, = 4.67x107*
°C™!, by = 2019 J g1,

25
o 20+
& .
' , /
2 W5
~
»®
2 Free convection of
Z 10 | et e o e e e dry steam asymptote
— A~
Free convaction of
T liquid asymptote
0 X N 2 . 2 L 2
0 05 10 15 20 25 3¢ 35 40
v

F1G. 7. (Nu,//Ra,, Iys VS s

Vapor Layer
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With these values, we obtain Sh = 0.2364, 5S¢ = 0.3323,
and R = 0.565, and consequently we can determine 77,5
by interpolation from Figs. 4(c) and (d) to get n,; =
0.49. With this value of #,; we obtain Nu, = 33.3 at
x = 100 m where Ra, , = 258 and Ra, ; = 425. The
vapor film boundary layer thickness can be
determined from the definition of n,; which gives §, =
0.49x/ \/Ra,_, and the vapor boundary layer thickness
is given by 6, = 5x/ \/Ra,, ;. This is plotted in Fig. 9
where it is shown that §, = 3Im and §;, = 243 m at x
= 100 m. The vertical velocity profiles for the vapor
and the liquid phases at x = 100 m are plotted in Fig.
10. It is shown that there is a velocity discontinuity at
the vapor-liquid interface which is a consequence of
the Darcy’s law. The vertical velocity in the vapor
phase is shown to be much higher than that in the

00 [
-8,

Vapor liquid
80 'rin'orfoce

Vapor
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F1G. 9. Boundary layer thickness along a dike.
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F1c. 10. Temperature and vertical velocity profiles around a
dike at x = 100m.

liquid phase because buoyancy force is larger and
viscosity is lower for vapor.

CONCLUDING REMARKS

The problem of stable film boiling about a vertical
plate in a porous medium filled with a subcooled liquid
has been solved based on standard approximations in
the classical film boiling literature. The validity of the
present theory depends critically on the assumptions
of (a) the non-existence of a two-phase zone in the
boundary layer, and (b) the vapor-liquid interface
being stable and smooth. For the classical film boiling
problems, the first assumption appears to be widely
accepted while the second assumption is more difficult
to be met in reality since bubbles near the interface
may be formed (resulting in a wavy shape) or detached
{resulting in an unsteady behavior). As noted by Cheng
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[7] the first approximation is also akin to the ‘abrupt
interface’ approximation [12] used in the
investigations of seawater intrusion in freshwater
aquifers, which is known to be accurate if the mixing
zone is small. The applicability of these assumptions
for film boiling in a porous medium can only be
determined by further experiments.
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EFFET DU SOUS-REFROIDISSEMENT DU LIQUIDE SUR L'EBULLITION EN FILM
AUTOUR D'UNE SURFACE VERTICALE CHAUDE DANS UN MILIEU POREUX

Résumé-—On considére I'ébullition en film avec convection naturelle autour d’une plaque verticale isotherme
dans un milieu poreux empli d’'un liquide sous-refroidi. Par des approximations de couche limite, des
solutions de similitude sont obtenues pour Pécoulement induit de la vapeur et dans les couches liquides avec
un interface distinct. A un nombre de Rayleigh donné pour la vapeur, le nombre de Nusselt dépend
uniquement de I'épaisseur du film de vapeur qui dépend elle-méme de paramétres tridimensionnels liés au
degré de surchauffe de la paroi, 4 Pextension du sous-refroidissement dans le liquide, aux rapports de
propriétés des phases liquide et vapeur. On trouve que l'effet de Paccroissement du sous-refroidissement du
fluide tend 4 diminuer P'épaisseur de la couche limite de vapeur, & accroitre 'épaisseur de la couche limite du
liquide et & augmenter le flux surfacique de chaleur. On discute I'application au transfert thermique par
¢bullition autour d’un dike introduit dans un aquifer.
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DER EINFLUSS UNTERKUHLTER_ FLUSSIGKEIT AUF DAS FILMSIEDEN UM EINE
VERTIKALE HEIZFLACHE IN EINEM POROSEN MEDIUM

Zusammenfassung— Behandelt wird das Problem des Filmsiedens bei stationdrer freier Konvektion um eine
beheizte isotherme vertikale Platte in einem porosen Medium, das mit unterkiihlter Fliissigkeit gefiillt ist.
Mit den Grenzschichtniherungen werden Ahnlichkeitsldsungen fiir die Auftriebsstrdmungen in den Dampf-
und unterkiihlten Fliissigkeitsschichten mit ausgeprigter Grenzfliche erhalten. Es ergibt sich, daf3 bei
gegebener Rayleigh-Zahl des Dampfes die Nusselt-Zahl nur von der dimensionslosen Dampf-Filmdicke
abhingt, die ihrerseits von drei dimensionslosen Parametern abhingig ist, die mit der Uberhitzung der
Wand, der Unterkiihlung der umgebenden Fliissigkeit und einem Stoffwertverhiltnis der Dampf- und
Flisssigphase in Beziehung stehen. Es ergibt sich, daB zunehmende Unterkiihlung der umgebenden
Fliissigkeit zu einer Abnahme der Dicke der Dampf-Grenzschicht, zu einer Zunahme der Dicke der
Fliissigkeits-Grenzschicht und zu einer Zunahme der Wirmestromdichte an der Oberfliche fiihrt.
Andererseits fiihrt eine Zunahme der Wandiiberhitzung zu einer Zunahme der Dampfschichtdicke, einer
Abnahme der Fliissigkeitsschichtdicke und zu einer Zunahme der Wirmestromdichte an der Oberfliche. Die
Anwendung auf den Wirmeiibergang beim Sieden um heiBes, in einen Aquifer eingedrungenes Ganggestein
wird diskutiert.

BJIUSSHUE HEJOTPEBA XWJKOCTH HA IJIEHOYHOE KHUIIEHHME HA
BEPTUKAJIBHOM TOBEPXHOCTU B MOPUCTON CPEJE

Annorauns — PaccMaTpuBaerca npobiieMa CTalHOHAPHOIO €CTECTBEHHO-KOHBEKTHBHOIO NJIEHOYHOTO
KHMEHHA Ha HarpeBaeMoil H30TEPMHYECKOH BEPTHKAIBHOM IJIACTHHE B MOPHCTOM cpeze, 3aNONHEHROM
Henorpetoil XuakocTblo. C NOMOLIBIO NPHOJHXEHHH NOTPAaHHYHOIO CJON MNONY4YEHbl YPaBHEHHs
nonoGHs 1JIA ONHCAHHA BBI3BAHHOTO CHJIaMH BBITAJIKHBAHHMS TEYEHHMA B CNOAX napa M HENOrpeToii
KHAKOCTH, MEXy KOTOPBIMH HMEETCS HeTKas rpaHMna pasaena. HaiizeHo, 4To npM 3aJaHHOM 3Haue-
Huy uMcna Penes ans nmapa umcno Hyccenbra ogHO3HAawHO 3aBHCHT OT Oe3pa3MepHOM TOMLMHBI
MJIEHKH Mapa, KOTOPas B CBOKO OYepelb 3aBUCHT OT Tpex Oe3pa3sMepHBIX NapaMeTpoB, CBA3AaHHBLIX CO
CTENEHbIO NEperpeBa CTEHKH, CTENEHBIO HEAOrpeBa OKPYXalolleH XHIKOCTH H OTHOUICHHEM MEXIY
cBoOHcTBaMH napoBoil H xHuakoi ¢a3. HalineHo, 4To ¢ yBesnHYECHHEM HENOIpeBa OKPYXKAOLIEH XKH[-
KOCTH TOJILIHHA MOTPaHHYHOIO CJOA Mapa yMEHbIUAETCS, a TOJIIHHA NOrPaHHYHOrO CJOS XKHIKOCTH
H TENJ0BO# NOTOK K MOBEPXHOCTH yBeNHyHBaloTcs. C ApYyroil CTOPOHBI, yBEJIHYEHHE NEPErPeBa CTEHKH
MNPHBOAHT K YBEJIMYCHHIO TOJILIMHHDI C/IOA [Iapa, YMEHBIUEHHIO TOJIMIHHBI CJI0S KHAKOCTH H YBEJIHYEHHIO
TENJI0BOTO NOTOKAa K NoBepxHOCTH. PaccMoTpeH npHMep mepeHoca Tensja NPH KUNEHHH Y MEPEMBIYKH,
NIOMEILECHHOR B BOJIOHOCHOM CJI0€.



